MICROWAVE POWERED AIRSHIP SYSTEM DESIGN FOR HIGH-ALTITUDE POWER RELAY AND OTHER APPLICATIONS

Richard M. Dickinson Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

The cost optimized point-design of a 2.45GHz microwave beam powered, 14.3 Mouft helium filled airship that is station kept at 70,000 ft altitude for power relay between ground and space is presented. The incident RF power at the J50 ft diameter by 1000 ft long platform is of order 1.5 MW.

The dry mass of the vessel at 71% gross buoyancy is 38,500lbs with a 150 ft diameter rectenna mass of 2500 lbs. and a payload of 5500 lbs.

The maximum stationkeeping power for 99 percentile winds over the continental US of 127 fps is about 500kW or 672 horsepower for 80% efficient propellers driven by electric motors, assuming a drag coefficient of 0.035 and a fineness ratio of 6.7 for the airship.

The ground based limited (4 /-10 deg) steering 70m diameter beam waveguide antenna is fed from a linearly polarized array of injection phase-locked cooker tube magnetrons whose combined 4 MW output radiates through a fixed 45 deg venetian blind polarizing grid to render the field circularly polarized. Subsequently the radiated field continues in the beamed guide to another rotary polarizer which positions the final radiated linearly polarized antenna illumination.

The positionable linearly polarized field can track the weather vane cocking of the linearly polarized rectema aboard the airship. Alternatively, the positionable polarization capability can be used to vary the output power to the rectema or another orthogonal polarized payload.

The system tradeoff between the combination of capital costs and operating costs of power and cost of gain for the transmitting antenna is shown to be minimum when both are approximately equal.

Because of the high altitude of the airship it is above most all of the weather and it can also extend the contact view time to low Earth orbiting spacecraft by a factor of three compared to ground based equipment. Consequently, laser or millimeter wavelength transmitters powered from the 2.45 GHz airship rectemna

dc power output can be used to beam power in an all weather link to the orbiting space assets suitably equipped with photovoltaics or mm-rectennas, respectively.

Other applications of the high altitude surrogate stationary satellite are for telecommunications and as an observation platform. Telecommunications can encompass AM, FM, and TV broadcasting, point of sale and inventory data relay, cellular telephones and paging for example. Observations from the platform can be for space, air, land and sea traffic monitoring and control, crop and weather watching, ice locations, border patrols, and astronomy.

sociation Aéronautique et Astronautique de France irican Astronautical Society

hide Agency

Association of Electricity Supply Industry of East Asia

rerican Institute of Aeronautics and Astronautics Arab Union of Producers, Transporters & Distributors

amianetary Society

dien Association of Physicists

iciety of Astronautics

"amational Conference on Large High-Voltage Electric

ternational Conference on Electricity Distribution sche Gese'lshaft für Luft & Raumfahrt EV otric Institute, U.S.A.

wer Council of the Commonwealth of Independent

eration of Electrical Power Companies, Japan nesian Aeronautics & Astronautics Institute ational Astronautical Federation

the of Electrical and Electronics Engineers

al Solar Energy Society

atv of Aeronautics & Astronautics

ese Rocket Society

inal Space Society

. TINA Eronce ing Ingritiste

rev Council

international Union of Producers & Distributors of

nion of Producers, Conveyors & Distributors of wer in Africa

1TION COMMITTEE

Centre Technologique en Aérospatiale, CANADA

Hydro-Québec, CANADA Realix Technologies, CANADA LORAL, CANADA EDE FRANCE CAE Electronique, CANADA Canadian Space Agency, CANADA A.D. Little, U.S.A. JATA, CANADA CASI, CANADA CAE Electronique, CANADA CITEC, CANADA Futron, U.S.A. CASL CANADA

CITEC, CANADA

Canadian Space Agency, CANADA

INTERNATIONAL SCIENTIFIC AND TECHNICAL COMMITTEE

Honorary Chairman:

Peter E. GLASER

Arthur D. Little Inc. 11 S.A.

Chairman:

Lucien DESCHAMPS

EDE FRANCE

Vice-Chairmen:

' BEKEY R.B. ERB

M. NAGATOMO

V.E. PRISNYAKOV

NASA HO, Washington, U.S.A. Canadian Space Agency, CANADA ISAS, JAPAN

Dniepropetrovsk State University,

UKRAINE

Members:

A.M. ANGELINI A. ARISMUNANDAR L.S. BELYAEV

K. BOGUS

R. BOUDREAULT

H. BRANDHORST

J. BRETON M. CLAVERIE

A. COHEN

D. CRISWELL F. DAVIDSON

M.B. DUKE

A. DUPAS

T. GAUDIN P.S. GOEL

N. KAYA

A. KOROTEEV

LI GUO XIN

J. MANKINS

C. MARCHAL G. MARYNIAK

K. MASUYAMA

R. MAYUR R.H. NANSEN J. RASMUSSEN

M. SHIGEHARA

J. SPIES M. TOUSSAINT V.A. VANKE

G.R. WOODCOCK

ENEL. ITALY

PT PLN (PERSERO), INDONES!A Siberian Energy Institute, RUSSIA

ESA/ESTEC

Centre Technologique en Aérospatiale.

CANADA

NASA Lewis Research Center, U.S.A.

CNES, FRANCE CNRS, FRANCE

Texas A & M University, U.S.A.

University of Houston, U.S.A.

MIT, U.S.A.

Lunar & Planetary Institute, Houston, U.S.A.

CNES, FRANCE

Prospective 2100, FRANCE ISRO, Bangalore, INDIA

Kobe University, JAPAN

Scientific Res. Inst. of Thermal

Processes, RUSSIA

Shanghai Institute of Space Power

Sources, CHINA

NASA HQ, Washington DC, U.S.A.

ONERA, FRANCE Futron, U.S.A.

Ministry of International Trade &

Industry, JAPAN

Global Futures Network, INDIA Solar Space Industries, U.S.A.

U.S. Energy Council, U.S.A. Tokyo Metropolitan Institute of

Technology, JAPAN DASA RI, GERMANY

EUROSPACE, FRANCE Moscow State University, RUSSIA

Boeing Aerospace Co., U.S.A.

SPS `97 Space & **Electric Power** for Humanity

CALL FOR PAPERS

Fourth International Symposium on SPACE MEANS FOR POWER UTILITIES

Third Wireless Power Transmission Conference

24 - 28 August, 1997 MONTREAL, CANADA

HONORARY SPONSORSHIP

- 'AA, 'nternational Academy of Astronautics
- U.N.O., United Nations Organisation
- UNESCO, United Nations Educational. Scientific & Cultural Organisation

ORGANISED BY

- CAS', Canadian Aeronautics and Space Institute
- SEE, Société des E'extriciens et des E'extronigiens

Dates for your diary:

Submission of abstracts: 15 January,1997 Submission of full texts: 1 June, 1997